Градиентный бустинг: почему слишком много деревьев ухудшает модель
🔸 Переобучение (overfitting) — каждое новое дерево минимизирует ошибку, но если деревьев слишком много, модель начинает подстраиваться под шум данных, теряя обобщающую способность.
🔸 Снижение прироста качества — на первых итерациях каждое дерево значительно улучшает предсказания. Однако после определенного количества итераций добавление новых деревьев практически не влияет на качество.
🔸 Рост вычислительной сложности — больше деревьев → выше время инференса и потребление памяти.
Градиентный бустинг: почему слишком много деревьев ухудшает модель
🔸 Переобучение (overfitting) — каждое новое дерево минимизирует ошибку, но если деревьев слишком много, модель начинает подстраиваться под шум данных, теряя обобщающую способность.
🔸 Снижение прироста качества — на первых итерациях каждое дерево значительно улучшает предсказания. Однако после определенного количества итераций добавление новых деревьев практически не влияет на качество.
🔸 Рост вычислительной сложности — больше деревьев → выше время инференса и потребление памяти.
BY Библиотека собеса по Data Science | вопросы с собеседований
Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.
That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.
Библиотека собеса по Data Science | вопросы с собеседований from tw